DINUCLEAR COPPER(II) COMPLEXES WITH THE NEW $[Cu_2(\mu\text{-OR})(\mu\text{-OAc})_2]^+$ (R = ALKYL) CORE: PREPARATION AND CHARACTERIZATION OF $[Cu_2(OR)(OAc)_2(bpy)_2]^+$ (R = Me, Et, Prⁿ) SALTS # SPYROS P. PERLEPES,* JOHN C. HUFFMAN and GEORGE CHRISTOU† Department of Chemistry and Molecular Structure Center, Indiana University, Bloomington, IN 47405-4001, U.S.A. #### and #### SOFIA PASCHALIDOU Department of Chemistry, University of Patras, 26500 Patra, Greece (Received 29 June 1994; accepted 22 August 1994) Abstract—Procedures are described for the synthesis of complexes containing the cations $[Cu_2(\mu-OR)(\mu-O_2CMe)_2(bpy)_2]^+$ (R = Me, Et, Prⁿ). Treatment of $Cu_2(O_2CMe)_4(H_2O)_2$ with 2 equivs of bpy and 1 equiv. of NaOH in anhydrous EtOH, followed by addition of NBu₁^aPF₆ in MeCN gave highly crystalline blue [Cu₂(OEt)(O₂CMe)₂(bpy)₂](PF₆) (1a) in ~70% yield. The corresponding reaction in dry MeOH-MeCN led to green crystals of the methoxo analogue [Cu₂(OMe)(O₂CMe)₂(bpy)₂](PF₆) (2a), also in ~70% yield. Layering of a methanolic solution of 1a with a mixture of Et₂O and hexanes led to clean, high-yield conversion to complex 2a. Complexes 1a, 2a and [Cu₂(OPrⁿ)(O₂CMe)₂(bpy)₂] (PF₆) (3) were also prepared from the reactions of the compound [Cu₂(OH)(O₂CMe)₂ (bpy)₂(PF₆)·3DMF with an excess of the appropriate alcohol. In order to study the influence of the counterion on the structure of the [Cu₂(OR)(O₂CMe)₂(bpy)₂]⁺ ions, the blue-turquoise complex [Cu₂(OEt)(O₂CMe)₂(bpy)₃(ClO₄) (1b) and the corresponding green methoxo-bridged compound [Cu₂(OMe)(O₂CMe)₂(bpy)₂](ClO₄) (2b) were obtained in the same manner as complexes 1a and 2a, respectively. The structure of the cations of both complexes determined by X-ray diffraction consisted of triply-bridged pairs of copper(II) atoms. Two of the bridging ligands are syn, syn $\eta^1: \eta^1: \mu_2$ acetate groups, the third being the OR ion; a terminal bpy molecule completes fivecoordination at each metal atom. The Cu···Cu separations are 3.093(1) and 3.230(1) Å for 2a and 1a, respectively. In 1a, the metal coordination geometry is best described as square pyramidal; the oxygen atoms [O(30) and O(32)] of one acetate occupy basal positions while the oxygens of the other acetate [O(34) and O(36)] occupy the apical positions of the two square pyramids. The cation of 2a consists of two distorted trigonal bipyramids sharing the methoxo oxygen as a common apex. The solid-state electronic and IR spectra of the complexes are discussed in terms of the nature of the bonding and structures of 1a and 2a. A cyclic voltammetry study of 1a and 2a in MeCN reveals a quasireversible reduction at ~ -0.75 V vs ferrocene, and an irreversible reduction at $E_p = -1.83$ V for 1a and -1.63 V for 2a, yielding copper metal, which deposits on the electrode. ^{*}On sabbatical leave from the University of Ioannina, Ioannina, Greece. Present address: Department of Chemistry, University of Patras, 26500 Patra, Greece [†]Author to whom correspondence should be addressed. The development of carboxylate chemistry is a central theme in transition metal chemistry, research in this area ranging from catalysis² to bioinorganic³ and materials chemistry.4 Over the last several years, we have been concerned with transition metal carboxylate chemistry employing 2,2'-bipyridine (bpy) as a terminal ligand.5-9 In particular, our interest⁷⁻⁹ in $M_2(O_2CR)_4$ /bpy chemistry stems from a desire to understand the factors that influence the binding of neutral nitrogen-donor chelates to systems with four relatively rigid bridging groups. Novel perturbations of the tetra-bridged structures were found for products of bpy reactions with $Cu_2(O_2CMe)_4(H_2O)_2$, $Rh_2(O_2CMe)_4(MeOH)_2^8$ and $Mo_2(O_2CCF_3)_4$. For the 4d metal carboxylates $Mo_2(O_2CCF_3)_4$ and $Rh_2(O_2CMe)_4(MeOH)_2$ metal-metal bonding has helped ensure retention of the [M₂]⁴⁺ unit in the products Rh₂(O₂CMe)₄(bpy)⁸ and syn- and anti-Mo₂(O₂CCF₃)₄(bpy)₂. The rhodium complex was found to exhibit an asymmetrical structure containing a chelating acetate ligand, and the latter pair of molybdenum complexes have been of particular interest because they are isomers. In contrast, for the 3d metal carboxylate Cu₂(O₂CMe)₄(H₂O)₂, the absence of metal-metal bonding permits a greater structural versatility. Thus, we have found that reactions of Cu₂(O₂CMe)₄(H₂O)₂ with bpy lead⁷ to the neutral species [Cu₂(O₂CMe)₄(bpy)₂]·2H₂O and $[Cu_4(O_2CMe)_8(bpy)_2]_n$, and salts of the cations $[Cu_2]_n$ $(O_2CMe)_3(bpy)_2$, $[Cu_2(O_2CMe)_2(H_2O)_2(bpy)_2]^{2+}$, $[Cu_2(OH)(H_2O)(O_2CMe)(bpy)_2]^{2+}$ and $[Cu_2(OH)Cl$ (O₂CMe)(bpy)₂]⁺. Related work has more recently been reported by others, 10-12 including the trinuclear species $[Cu_3(O_2CMe)_4(H_2O)(bpy)_3]^{2+}$. In the present work, we have extended our efforts to encompass reactions of $Cu_2(O_2CMe)_4(H_2O)_2$ with bpy and OH^- in alcohol solution, and have encountered products containing the new $[Cu_2(\mu-OR)(\mu-O_2CMe)_2]^+$ (R=alkyl) core. We herein describe the preparation and characterization of these species. #### **EXPERIMENTAL** #### Starting materials All manipulations were performed under aerobic conditions using materials as received. MeCN and Et_2O -hexanes were dried by distillation from CaH_2 and sodium-benzophenone, respectively. The synthesis of the hydroxo complex $[Cu_2(OH)(O_2CMe)_2(bpy)_2](PF_6) \cdot 3DMF$ will be described in a subsequent report.¹³ **CAUTION**: Perchlorate salts are potentially explosive. Although no detonation tendencies have been observed in our work, caution is advised and handling of only small quantities is recommended. # Compound preparation Preparation of $[Cu_2(OEt)(O_2CMe)_2(bpy)_2](PF_6)$ (1a). Method A. Solid $Cu_2(O_2CMe)_4(H_2O)_2$ (1.00 g, 2.50 mmol) was slowly dissolved in a solution of bpy (0.78 g, 5.0 mmol) in anhydrous EtOH (50 cm³). The resulting deep blue solution was stirred while a solution of NaOH (0.10 g, 2.5 mmol) in anhydrous EtOH (20 cm³) was added to give a darker blue solution. To the latter was added a solution of NBu₄ⁿPF₆ (1.9 g, 4.0 mmol) in MeCN (10 cm³), and the flask was stored overnight at ambient temperature; the resultant blue crystals were collected by filtration, washed with EtOH and Et₂O, and dried in vacuo over P₄O₁₀. Some crystals were suitable for X-ray crystallography. Yield 1.23 g (66%). Recrystallization can be effected from anhydrous EtOH-Et₂O. An IR feature at ~ 3400 cm⁻¹ assignable to H₂O suggested the dried solid to be hygroscopic, and this was supported by the analytical data, which gave a reasonable fit for $[Cu₂(OEt)(O₂CMe)₂(bpy)₂](PF₆) \cdot 2H₂O. Found:$ C, 39.7; H, 3.6; N, 7.3; P, 4.1; Cu, 16.0. Calc. for $C_{26}H_{31}N_4O_7PF_6Cu_2: C, 39.9; H, 4.0; N, 7.2; P, 4.0;$ Cu, 16.2%. IR spectrum (KBr pellet, cm⁻¹): 3396 (w, br). Effective magnetic moment per copper(II): 1.99 μ_B at 26°C. Solid-state (diffuse reflectance) electronic spectrum: λ_{max} 360 sh, 705 nm. Electronic spectrum in MeCN: $\lambda_{max}~(\epsilon_M/Cu_2,~dm^3~mol^{-1}$ cm⁻¹): 694 nm (150). When the whole procedure was repeated using 96% EtOH and MeCN as received, crystals of 1a were again obtained, but these were contaminated with [Cu₂(OH)(O₂CMe)₂ $(bpy)_2(PF_6) \cdot H_2O_{.13}$ Method B. A slurry of complex [Cu₂(OH) (O₂CMe)₂(bpy)₂](PF₆)·3DMF¹³ (0.40 g, 0.43 mmol) in anhydrous EtOH (20 cm³) was stirred at 50°C for 2 h. A colour change from turquoise to blue occurred. After cooling the reaction mixture to room temperature, the blue solid was collected by filtration, washed with cold EtOH and Et₂O, and dried in vacuo; yield 0.27 g (84%). The product was spectroscopically identical to authentic material prepared by Method A. Preparation of [Cu₂(OEt)(O₂CMe)₂(bpy)₂] (ClO₄) (**1b**). This complex was prepared in a manner analogous to that for **1a** (Method A) using NEt₄ClO₄ (0.58 g, 2.5 mmol). Storage of the reaction solution in a freezer for 2 days yielded blue–turquoise crystals suitable for crystallography. The yield was 0.90 g (51%). Found: C, 44.4; H, 3.9; N, 7.8. Calc. for C₂₆H₂₇N₄O₉ClCu₂: C, 44.5; H, 3.9; N, 8.0%. Effective magnetic moment per copper(II): 1.97 μ_B at 26°C. Solid-state (diffuse reflectance) electronic spectrum: λ_{max} 370, 717 nm. of $[Cu_2(OMe)(O_2CMe)_2(bpy)_2]$ Preparation (PF₆) (2a). Method A. To a stirred green solution of $Cu_2(O_2CMe)_4(H_2O)_2$ (1.00 g, 2.50 mmol) in anhydrous MeOH (110 cm³) was added solid bpy (0.78 g, 5.0 mmol). To the resultant deep blue solution was added a solution of NaOH (0.10 g, 2.5 mmol) in anhydrous MeOH (15 cm³), followed by a solution of NBu₄ⁿPF₆ (1.08 g, 2.8 mmol) in MeCN (20 cm³). The resultant dark blue solution was stirred for a further 10–15 min, and Et₂O (140 cm³) added to initiate crystallization. The flask was stored overnight in a refrigerator, and the wellformed green crystals (suitable for crystallography) were collected by filtration, washed with Et₂O and dried in vacuo; yield 1.30 g (71%). The product was recrystallized from anhydrous MeOH-Et₂O. Found: C, 41.8; H, 3.4; N, 7.3. Calc. for C₂₅H₂₅N₄ O₅PF₆Cu₂: C, 40.9; H, 3.4; N, 7.6%. Effective magnetic moment per copper(II): 2.01 μ_B at 21°C. Solid-state (diffuse reflectance) electronic spectrum: λ_{max} 350, 740, 825 nm. Electronic spectrum in MeCN: λ_{max} 695 nm (150); in MeOH, 634 nm (95). Method B. Method B for complex 1a was repeated using MeOH in place of EtOH; the yield of 2a was $\sim 60\%$. The identity of the product was deduced by spectroscopic comparison with material from Method A. Method C. A blue solution of 1a (0.20 g, 0.27 mmol) in anhydrous MeOH (25 cm³) was layered with a 1:1 mixture of hexanes and Et_2O (30 cm³). Slow mixing yielded green crystals of 2a. The crystals were collected by filtration, washed with Et_2O and dried in vacuo; yield 0.17 g (87%). The green product was spectroscopically identical to that from Method A. of $[Cu_2(OMe)(O_2CMe)_2(bpy)_2]$ Preparation (ClO₄) (2b). The procedure for the preparation of complex 1b [but in anhydrous MeOH (120 cm³)-MeCN (12 cm³)] was followed to the formation of the final dark blue solution. The solution was layered with an equal volume of Et₂O and left undisturbed at ambient temperature for 2 weeks. The resulting green crystals were collected by filtration, washed with Et₂O and dried in vacuo over silica gel; yield 0.84 g (49%). The product was recrystallized from MeOH-Et₂O. Found: C, 43.7; H, 3.7; N, 7.9. Calc. for C₂₅H₂₅N₄O₉ClCu₂: C, 43.6;H, 3.7; N, 8.1%. Effective magnetic moment per copper(II): 1.99 μ_B at 20°C. Solid-state (diffuse reflectance) electronic spectrum: λ_{max} 352, 745, 820 nm. Preparation of $[Cu_2(OPr^n)(O_2CMe)_2(bpy)_2](PF_6)$ (3). A slurry of $[Cu_2(OH)(O_2CMe)_2(bpy)_2](PF_6)$. 3DMF¹³ (0.56 g, 0.60 mmol) in anhydrous PrⁿOH (290 cm³) was stirred under reflux for 30 min. The solid dissolved to give a green solution, which slowly turned blue upon cooling to room temperature. The blue solution was filtered and the filtrate was stored for 3 days at -10° C. The product formed as small blue crystals that were isolated by filtration, washed with Et₂O and dried in vacuo over P₄O₁₀; yield 0.22 g (48%). Found: C, 42.5; H, 3.9; N, 7.5; Cu, 17.0. Calc. for $C_{27}H_{29}N_4O_5PF_6Cu_2$: C, 42.6; H, 3.8; N, 7.4; Cu, 16.7%. Effective magnetic moment per copper(II): $2.00 \mu_B$ at 24° C. Solid-state (diffuse reflectance) electronic spectrum: λ_{max} 365, 710 nm. # X-ray crystallography and structure solution Data for 1a and 2a were collected on a Picker four-circle diffractometer at -155° C; details of the diffractometry, low-temperature facilities and computational procedures employed by the Molecular Structure Center are available elsewhere.¹⁴ Data collection parameters are summarized in Table 1. For both complexes, a systematic search of a limited hemisphere of reciprocal space located a set of diffraction maxima with no symmetry or systematic absences, indicating a triclinic space group. The choice of the centrosymmetric space group $P\bar{1}$ was confirmed by the successful solution and refinement of the structures. The structures were solved by a combination of direct methods (MULTAN) and Fourier techniques and refined by full-matrix leastsquares. All non-hydrogen atoms were readily located and refined with anisotropic thermal parameters. For both complexes, all hydrogen atoms were clearly visible in a subsequent difference Fourier map, and they were included in the final cycles and refined with isotropic thermal parameters. Final difference Fourier maps were essentially featureless. Final values of R and $R_{\rm w}$ are included in Table 1. Selected bond distances and angles are given in Tables 2 and 3. ### Physical measurements Elemental analyses were performed at the Microanalytical Laboratory, Department of Chemistry, Manchester University, U.K. IR spectra were recorded as Nujol mulls between CsI plates or KBr discs using a Nicolet 510P Fourier transform spectrometer or a Perkin-Elmer 283 spectrophotometer. Solid-state (diffuse reflectance, 890–330 nm) and solution (800–350 nm) electronic spectra were Table 1. Crystallographic data for complexes 1a and 2a | Parameter | 1a | 2a C ₂₅ H ₂₅ N ₄ O ₅ PF ₆ Cu ₂ | | |-----------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------|--| | Formula | $C_{26}H_{27}N_4O_5PF_6Cu_2$ | | | | $M_{\rm r}$ (g mol ⁻¹) | 747.58 | 733.55 | | | Space group | $P\bar{1}$ | $P\bar{1}$ | | | a (Å) | 10.514(2) | 9.376(3) | | | b (Å) | 16.485(2) | 18.111(6) | | | c (Å) | 8.910(1) | 8.515(3) | | | α (°) | 105.05(1) | 103.01(2) | | | β (°) | 90.50(1) | 100.40(1) | | | γ (°) | 92.28(1) | 93.46(1) | | | $V(Å^3)$ | 1489.81 | 1377.96 | | | Z | 2 | 2 | | | $\rho_{\rm calc}$ (g cm ⁻³) | 1.667 | 1.768 | | | Radiation (λ, A) | $Mo-K_{\alpha}$ (0.71069) | 069) $Mo-K_{x}(0.71069)$ | | | $\mu \text{ (cm}^{-1})$ | 15.623 | 16.874 | | | 2θ range (°) | 6.00-45.00 | 6.00-45.00 | | | Scan speed (deg min ⁻¹) | 4.0 | 8.0 | | | Scan width (°) | 2.0 + dispersion | 2.0 + dispersion | | | Data collected | 5036 | 6168 | | | Unique data | 3900 | 3593 | | | Data with $F > 2.33\sigma(F)$ | 3396 | 3321 | | | Averaging R | 0.040 | 0.020 | | | $R(R_{\rm W})$ (%) | 3.76 (3.98) | 2.83 (3.19) | | | Goodness of fit for last cycle | 1.032 | 1.103 | | Table 2. Selected bond distances (Å) and angles (°) for [Cu₂(OEt)(O₂CMe)₂(bpy)₂](PF₆) (1a) | Bond distances | | |-----------------------------------|-----------------------------------| | $Cu(1)\cdots Cu(2)$ 3.230(1) | | | Cu(1)— $O(27)$ 1.954(3) | Cu(2)— $O(27)$ 1.939(3) | | Cu(1)—O(30) 1.945(3) | Cu(2)— $O(32)$ 1.982(3) | | Cu(1)—O(34) 2.155(3) | Cu(2)— $O(36)$ 2.164(3) | | Cu(1)— $N(3)$ 2.047(3) | Cu(2)— $N(15)$ 2.026(3) | | Cu(1)—N(14) 2.013(3) | Cu(2)—N(26) 2.023(3) | | Bond angles | | | Cu(1)—O(27)—Cu(2) 112.1(1) | | | O(34)—Cu(1)—O(27) 100.1(1) | O(36)— $Cu(2)$ — $O(27)$ 97.0(1) | | O(34)— $Cu(1)$ — $O(30)$ 97.0(1) | O(36)— $Cu(2)$ — $O(32)$ 99.9(1) | | O(34)— $Cu(1)$ — $N(3)$ 104.8(1) | O(36)— $Cu(2)$ — $N(15)$ 95.8(1) | | O(34)— $Cu(1)$ — $N(14)$ 89.9(1) | O(36)— $Cu(2)$ — $N(26)$ 97.3(1) | | O(27)— $Cu(1)$ — $O(30)$ 94.7(1) | O(27)— $Cu(2)$ — $O(32)$ 95.7(1) | | O(27)— $Cu(1)$ — $N(3)$ 154.3(1) | O(27)— $Cu(2)$ — $N(15)$ 165.9(1) | | O(27)— $Cu(1)$ — $N(14)$ 94.1(1) | O(27)— $Cu(2)$ — $N(26)$ 92.5(1) | | O(30)— $Cu(1)$ — $N(3)$ 88.6(1) | O(32)— $Cu(2)$ — $N(15)$ 87.8(1) | | O(30)— $Cu(1)$ — $N(14)$ 167.8(1) | O(32)— $Cu(2)$ — $N(26)$ 160.0(1) | | N(3)— $Cu(1)$ — $N(14)$ 79.8(1) | N(15)— $Cu(2)$ — $N(26)$ 80.1(1) | recorded on Varian 634 and Hewlett-Packard 4450A instruments, respectively. Magnetic susceptibilities were measured at room temperature by the Faraday method with a Cahn-Ventron RM-2 balance standardized with HgCo(NCS)₄. The molar susceptibilities were corrected for the diamagnetism of the constituent atoms using Pascal's constants. Cyclic voltammetry was performed using an IBM Model EC 225 voltammetric analyser, a PAR Model 175 universal programmer and a stan- | Table 3. Selected bond distances | s (Å) and angles (° |) for [Cu ₂ (OMe)(O ₂ CMe) | $_{2}(bpy)_{2}(PF_{6})$ (2a) | |----------------------------------|---------------------|--------------------------------------------------|------------------------------| |----------------------------------|---------------------|--------------------------------------------------|------------------------------| | Bond distances | | | |------------------------|---------------|-----------------------------------| | $Cu(1)\cdots Cu(2)$ | 3.093(1) | | | Cu(1)— $O(35)$ | 1.922(2) | Cu(2)— $O(35)$ 1.931(2) | | Cu(1)— $N(3)$ | 1.988(3) | Cu(2)— $N(15)$ 2.001(3) | | Cu(1)—O(31) | 2.000(2) | Cu(2)— $O(33)$ 1.993(2) | | Cu(1)—O(27) | 2.066(2) | Cu(2)— $O(29)$ 2.099(2) | | Cu(1)— $N(14)$ | 2.093(3) | Cu(2)— $N(26)$ 2.059(3) | | Bond angles | | | | Cu(1)—O(35)—Ct | u(2) 106.8(1) | | | O(35)—Cu(1)—N | (3) 175.2(1) | O(35)— $Cu(2)$ — $N(15)$ 173.8(1) | | O(35)—Cu(1)—O | (31) 94.1(1) | O(35)— $Cu(2)$ — $O(33)$ 93.6(1) | | O(35)—Cu(1)—O | (27) 98.0(1) | O(35)— $Cu(2)$ — $O(29)$ 97.6(1) | | O(35)—Cu(1)—N | (14) 96.5(1) | O(35)— $Cu(2)$ — $N(26)$ 95.6(1) | | O(31)Cu(1)O | (27) 122.8(1) | O(33)— $Cu(2)$ — $O(29)$ 116.2(1) | | O(31)— $Cu(1)$ — N | (14) 135.6(1) | O(33)— $Cu(2)$ — $N(26)$ 138.7(1) | | O(27)—Cu(1)—N | (14) 98.1(1) | O(29)— $Cu(2)$ — $N(26)$ 102.3(1) | | N(3)— $Cu(1)$ — $O(3)$ | 31) 86.9(1) | N(15)— $Cu(2)$ — $O(33)$ 87.5(1) | | N(3)— $Cu(1)$ — $O(3)$ | 27) 85.4(1) | N(15)— $Cu(2)$ — $O(29)$ 87.4(1) | | N(3)— $Cu(1)$ — $N($ | 14) 79.6(1) | N(15)— $Cu(2)$ — $N(26)$ 79.6(1) | dard three-electrode assembly (glassy carbon working, platinum wire auxiliary, SCE reference), with 0.1 M NBu $_4^n$ ClO $_4$ as supporting electrolyte. The scan rate was 100 mV s $^{-1}$. No IR compensation was employed. Quoted E values (± 0.01 V) are vs the ferrocene/ferricinium couple under the same conditions. # RESULTS AND DISCUSSION Syntheses Treatment of $Cu_2(O_2CMe)_4(H_2O)_2$ with 2 equivs of bpy and 1 equiv. of NaOH in anhydrous EtOH followed by addition of NBu₄ⁿPF₆ in anhydrous MeCN gave highly crystalline 1a in ~70% yield. A structural characterization (see below) established the formulation $[Cu_2(OEt)(O_2CMe)_2(bpy)_2](PF_6)$. The preparation of this blue complex is summarized in eq. (1). $$Cu_2(O_2CMe)_4(H_2O)_2 + 2 \text{ bpy} + OH^- + EtOH$$ $\rightarrow [Cu_2(OEt)(O_2CMe)_2(bpy)_2]^+$ $+ 2 \text{ MeCO}_2^- + 3 \text{ H}_2O. \quad (1)$ The parallel investigation of this reaction in anhydrous MeOH–MeCN surprisingly led to the formation of green crystals in $\sim 70\%$ yield, on adding Et₂O to the blue reaction solution. An X-ray crystallographic study (see below) showed this material to be $[Cu_2(OMe)(O_2CMe)_2(bpy)_2](PF_6)$ (2a). Complexes 1a and 2a have a significant structural difference which is responsible for their different colours; in 1a the metal coordination geometry is best described as square pyramidal, while in 2a it is distorted trigonal bipyramidal. Initially we suspected that the isolation of the two structurally different complexes was due to the different method of crystallization. We therefore added Et₂O to the reaction solution of 1a after treatment with NBu₄ PF₆; blue crystals of 1a were again isolated. In order to then probe the possible influence of another parameter on the structure of the $[Cu_2(OR)]$ $(O_2CMe)_2(bpy)_2]^+$ (R = Me, Et) ions, we decided to seek the isolation and identification of these cations with another counterion. The blue-turquoise complex $[Cu_2(OEt)(O_2CMe)_2(bpy)_2](ClO_4)$ (1b) and the corresponding green methoxo-bridged complex 2b were obtained in an almost exactly analogous manner as compounds 1a and 2a, respectively, using NEt₄ClO₄ as the anion source. A crystal structure of 1b (not shown) confirmed that the cation of 1b is very similar to the cation of 1a, i.e. the copper(II) coordination geometry is again square pyramidal. In addition, the solid-state electronic spectrum of 2b is almost identical to that of 2a, suggesting that the two complexes have similar structures. The identity of the counterion (PF₆ vs ClO₄) is thus not of importance in determining the structures of the $[Cu_2(OR)(O_2CMe)_2(bpy)_2]^+$ (R = Me, Et) cations. Presumably, minor changes in crystal-packing forces as the OR⁻ alkyl size is varied account for the variability in coordination geometry in the crystalline state, since MeO⁻ and EtO⁻ are similar ligands from both electronic and steric points of view.¹⁵ In fact, electronic spectral data indicate both complexes are identical in solution (see below). It should be noted that the concentration of water in the solvents affects the above reactions. As will be described in a future report, ¹³ the H_2O concentration has an important influence on the core identity in the case of PF_6^- , leading to $[Cu_2(OH)(O_2CMe)_2(bpy)_2]^+$ species. We have already explained that if the reaction solution to 1b contains $\sim 5\%$ H_2O and an excess of ClO_4^- , $Cu_2(O_2CMe)_2$ $(H_2O)_2(bpy)_2$ is converted to $Cu_2(OH)_2(bpy)_2$ $(ClO_4)_2$ and $[Cu_2(O_2CMe)_3(bpy)_2](ClO_4)$. ^{7a} Complexes containing the cations $[Cu_2(OR) (O_2CMe)_2(bpy)_2]^+$ (R = Me, Et, Pr^n) may also be prepared from $[Cu_2(OH)(O_2CMe)_2(bpy)_2]^+$. Three reactions that convert complex $[Cu_2(OH) (O_2CMe)_2(bpy)_2](PF_6) \cdot 3DMF^{13}$ to 1a, 2a and 3 are detailed in the Experimental section; these procedures are summarized in eq. (2). $$[Cu2(OH)(O2CMe)2(bpy)2]+ + ROH \xrightarrow{ROH}$$ $$[Cu2(OR)(O2CMe)2(bpy)2]+ + H2O (2)$$ Further detail and discussion of these alcoholysis reactions will be included in the full report on the $[Cu_2(OH)(O_2CMe)_2(bpy)_2]^+$ complexes. The solid-state UV-vis spectral characteristics of 3 are almost identical to those of 1a, supporting similar structures and coordination geometries. The procedure summarized in eq. (2) could no doubt be extended to a variety of R groups. A third synthetic route to 2a is provided by the alkoxide substitution reaction of 1a with an excess of MeOH [eq. (3)]. This procedure demonstrates the lability to substitution of the bound ethoxo group and it could no doubt also be extended to more alkoxides and carboxylates. $$[Cu2(OEt)(O2CMe)2(bpy)2]+ + MeOH \xrightarrow{MeOH}$$ $$[Cu2(OMe)(O2CMe)2(bpy)2]+ + EtOH (3)$$ Complexes 1a and 2a hydrolyse slowly in moist air over several days to give powders having the composition $[Cu_2(OH)(O_2CMe)_2(bpy)_2](PF_6) \cdot xH_2O$ (x = 1-2), as indicated by IR spectroscopy and elemental analysis. This type of substitution of alkoxide by hydroxide in the solid state has been observed previously.¹⁶ #### Description of structures ORTEP projections of the cations of complexes 1a and 2a are shown in Figs 1 and 2, respectively. The important structural parameters are listed in Tables 2 and 3. The structure of **1a** consists of a dinuclear, triplybridged [Cu₂(OEt)(O₂CMe)₂(bpy)₂]⁺ cation and a well-separated PF₆ anion; the latter will not be discussed. The cations are well separated from each other. The two acetates are in the familiar bidentate syn, syn $\eta^1:\eta^1:\mu_2$ -bridging mode; a terminal bpy molecule and the bridging ethoxo group complete five-coordination at each copper(II) atom. The coordination geometry about each copper(II) is well described as square pyramidal, with the acetate oxygens O(34) and O(36) occupying the apical positions for Cu(1) and Cu(2), respectively. As expected, the axial bonds are longer than bond lengths in the basal planes. Cu(1) lies 0.274 Å and Cu(2) lies 0.261 Å out of their respective least-squares basal planes towards O(34) and O(36), respectively [max. deviation from the least-squares basal planes of Cu(1) and Cu(2) is 0.174 Å by N(3) and 0.041 Å by N(15), respectively]. The dihedral angle between the two planes is 34.5°. The $Cu(1) \cdots Cu(2)$ distance is 3.230(1) Å. Analysis of the shape-determining angles using the approach of Addison et al. 17 yields τ values of 0.23 for Cu(1) and 0.10 for Cu(2) ($\tau = 0$ and 1 for perfect square pyramidal and trigonal bipyramidal geometries, respectively). Thus, the geometry around Cu(1) deviates from ideal square pyramidal geometry more than that around Cu(2). The structure of the cation of complex 2a consists of a pair of copper(II) atoms bridged by two $\eta^1:\eta^1:\mu_2$ acetate groups and a μ_2 -OMe⁻ ion. A terminal bpy molecule completes five-coordination at each metal atom. It is thus extremely similar to the cation of 1a. However, the five donor atoms around each copper(II), while not disposed symmetrically in either a square pyramidal or trigonal bipyramidal array, adopt a distorted trigonal bipyramidal arrangement such that O(31), O(27) and N(14) comprise the trigonal plane around Cu(1), and O(33), O(29) and N(26) comprise the trigonal plane around Cu(2). Thus, the cation of 2a consists of two trigonal bipyramids sharing a common apex, O(35). Cu(1) lies 0.212 Å and Cu(2) lies 0.191 Å out of their respective equatorial planes towards O(35). The dihedral angle between the two planes is 107.5°. An alternative description for both Cu(1) and Cu(2) is severely distorted square pyramidal with O(27) and O(29) in the apices, respectively. The preferred trigonal bipyramidal description is further supported by the τ values, which are 0.66 for Cu(1) and 0.59 for Cu(2). The $Cu(1) \cdots Cu(2)$ distance is 3.093(1) Å. The Cu—N distances, and their variation as a function of axial vs equatorial location at both Cu(1) and Cu(2), are typical of trigonal bipyramidal copper(II)/bpy complexes. 7a,18 Fig. 1. ORTEP representation of the cation of complex 1a at the 50% probability level. Bipyridine carbon atoms are labelled consecutively from N(3) and N(15). Fig. 2. ORTEP representation of the cation of complex 2a at the 50% probability level. Bipyridine carbon atoms are labelled consecutively from N(3) and N(15). The bond lengths to the bridging methoxo and acetate oxygens are typical. 7.11,19 Compound 2a has the shorter Cu···Cu distance and the smaller Cu—O—Cu angle. We rationalize these features as due to (i) the methoxo oxygen atom being in an apical position of each trigonal bipyramidal copper(II) and (ii) the large dihedral angle (107.5°) between the two equatorial planes. From the sum of angles about the alkoxo bridging oxygen atoms (332.9–336.8°), it is clear that it has pyramidal rather than planar geometry in both structures. Note also that the Cu···Cu separations are much larger than those in the classic "Cu₂(O₂CR)₄L₂" structure, where the four bidentate bridging carboxylates allow a much closer approach of the metals (~2.6–2.7 Å).²⁰ Complexes 1a and 2a represent the first structurally characterized examples of copper(II) complexes with the $[Cu_2(\mu\text{-OR})(\mu\text{-O}_2CR')_2]^+$ (R = alkyl) core. Two other Cu_2 complexes are structurally related to compounds 1a and 2a in that they both have two bidentate bridging carboxylates and one bridging aryloxide-type ligand: (i) $[Cu_2L(OAc)_2]^+$ $[L = monoanion of 2,6-bis ((N - methylpiperazino)methyl) - 4 - chlorophenol]^{21a} and (ii) <math>[Cu_2L'(O_2CPh)_2]^+$ [L' = monoanion of 2,6-bis(N-(2-diethylaminoethyl) - N-ethyl-aminomethyl)-4-methylphenol].^{21b} In these complexes, the bridging aryloxide oxygen is part of the pentadentate binucleating ligands L and L'. # UV-vis and IR spectroscopy The complexes in each of the groups 1a, 1b, 3 and 2a, 2b possess very similar solid-state electronic spectra, supporting similar structures for their cations. The d-d wavelength (705–717 nm) of 1a, 1b and 3 is fairly typical of square pyramidal species with a CuN_2O_3 chromophore. These complexes also exhibit an absorption in the 360–370 nm range, assigned to an OR--to-copper(II) ligand-to-metal charge transfer (LMCT) transition. 22b,c The solidstate d-d spectra of 2a and 2b consist of two equally intense maxima, only just resolved, at 740, 825 nm and 745, 820 nm, respectively. The spectra are characteristic of distorted trigonal bipyramidal structures.^{23a} As expected,^{23a} the d-d transitions in the methoxo-bridged trigonal bipyramidal complexes occur at lower energies compared with the square pyramidal complexes 1a, 1b and 3. The distortion of the equatorial angles from the ideal 120° value gives rise to the twin-peaked d-d spectra frequently seen in such distorted trigonal bipyramidal copper(II) systems.^{23b} Compounds 2a and 2b exhibit an OMe--to-copper(II) LMCT transition at ~350 nm. ^{22b,c,23a} Complexes 1a, 1b and 3 retain their colours in MeCN solution. The d-d spectra of the representative compounds 1a and 2a in dry MeCN consist of a broad, featureless band at ~ 695 nm. The slight difference in wavelength between the solid-state and solution spectra of la indicates a cation-solvent interaction, and it is possible that MeCN may be bound as a sixth ligand. 7a The solution spectrum of 2a is considerably different from the solid-state spectrum, indicating structural changes upon dissolution; indeed, the spectra of 1a and 2a in MeCN are essentially identical, indicating that the solid-state differences do not persist in solution. In the IR spectra, the perchlorate compounds **1b** and **2b** exhibit very strong bands near 1090 and 620 cm⁻¹ due to the $v_3(T_2)$ and $v_4(T_2)$ modes of the uncoordinated ClO_4^- , respectively.^{24a} The T_{1u} IRactive modes of the PF₆ anion appear at ~840 and ~560 cm⁻¹ in the spectra of **1a**, **2a** and **3**. The $v_{as}(\text{COO})$ and $v_s(\text{COO})$ bands of the complexes are at 1554–1601 and ~1440 cm⁻¹, respectively; the difference Δ [$\Delta = v_{as}(\text{COO}) - v_s(\text{COO})$] is less than that observed for NaO₂CMe (164 cm⁻¹), as expected for the bidentate bridging mode of carboxylate ligation.^{24b} A medium-to-strong band at ~1020 cm⁻¹ is assigned to the C—O stretching vibration of the bridging alkoxy group.^{24c} # Cyclic voltammetry of 1a and 2a Complexes 1a and 2a were studied using the cyclic voltammetry (CV) technique in MeCN. It is considered probable that these complexes retain their dinuclear nature on dissolution in this solvent; this belief is based on earlier work with the related complexes $[Cu_2(O_2CMe)_3(bpy)_2](ClO_4)$ and $[Cu_2(OH)(H_2O)(O_2CMe)(bpy)_2](ClO_4)_2$ (which also possess monoatomically bridging ligands), where a dinuclear structure in MeCN solution was confirmed.^{7a} Initial scans in the potential range 0.1 to -1.1 V indicated the presence of one quasi- reversible reduction assigned as a two-electron process to give the 2 copper(I) state. These reductions had $E_{1/2}$ values of -0.72 (1a) and -0.76 V (2a). When the cathodic switching potential was made more negative (-2.1 V), a second, irreversible reduction was observed with $E_{\rm p,c}$ values of -1.83V for 1a and -1.63 V for 2a. This process is assigned to the reduction to the 2 copper(0) level, based on the absence of a return wave and the presence of a very large, anodic stripping wave at ~ -0.6 V characteristic of oxidation of copper metal deposited on the electrode surface. This deposit was clearly visible in both cases when the working electrode was examined after stopping the experiment at the cathodic switching potential. Overall, the CV behaviour of complexes 1a and 2a is fairly similar to that observed for other dinuclear copper(II)/RCO₂-/bpy complexes.⁷ ### Supplementary material available Atomic coordinates have been deposited with the Cambridge Crystallographic Data Centre. Complete MSC structure reports (Nos 89093 and 90047 for 1a and 2a, respectively) are available on request from the Indiana University Chemistry Library. Acknowledgements—This work was supported by NSF Grant CHE 8808019. We thank E. Libby for assistance with the voltammetry and K. Dimitrou for help with figure preparation. #### REFERENCES - R. C. Mehrotra and R. Bohra, Metal Carboxylates. Academic Press, London (1983). - (a) T. R. Felthouse, Prog. Inorg. Chem. 1982, 29, 73; (b) E. Boyar and S. D. Robinson, Coord. Chem. Rev. 1983, 50, 109; (c) S. A. Best, R. G. Squires and R. A. Walton, J. Catal. 1979, 60, 171; (d) R. H. Fish, R. H. Fong, J. B. Vincent and G. Christou, J. Chem. Soc., Chem. Commun. 1988, 1504; (e) R. A. Leising, J. Kim, M. A. Pérez and L. Que Jr., J. Am. Chem. Soc. 1993, 115, 9524. - 3. G. Christou, Accts Chem. Res. 1989, 22, 328 and references therein. - 4. (a) M. C. Kerby, B. W. Eichhorn, J. A. Creighton and P. C. Vollhardt, *Inorg. Chem.* 1990, 29, 1319; (b) R. H. Cayton, M. H. Chisholm, J. C. Huffman and E. B. Lobkovsky, *J. Am. Chem. Soc.* 1991, 113, 8709 and references therein. - (a) J. B. Vincent, J. C. Huffman, G. Christou, Q. Li, M. A. Nanny, D. N. Hendrickson, R. H. Fong and R. H. Fish, J. Am. Chem. Soc. 1988, 110, 6898; (b) J. K. McCusker, J. B. Vincent, E. A. Schmitt, M. L. - Mino, K. Shin, D. K. Coggin, P. M. Hagen, J. C. Huffman, G. Christou and D. N. Hendrickson, J. Am. Chem. Soc. 1991, 113, 3012. - (a) J. B. Vincent, H.-L. Tsai, A. G. Blackman, S. Wang, P. D. W. Boyd, K. Folting, J. C. Huffman, E. B. Lobkovsky, D. N. Hendrickson and G. Christou, J. Am. Chem. Soc. 1993, 115, 12353 and references therein; (b) R. Sessoli, H.-L. Tsai, A. R. Schake, S. Wang, J. B. Vincent, K. Folting, D. Gatteschi, G. Christou and D. N. Hendrickson, J. Am. Chem. Soc. 1993, 115, 1804; (c) E. Libby, K. Folting, C. J. Huffman, J. C. Huffman and G. Christou, Inorg. Chem. 1993, 32, 2549 and references therein; (d) M. W. Wemple, H.-L. Tsai, K. Folting, D. N. Hendrickson and G. Christou, Inorg. Chem. 1993, 32, 2025 and references therein. - (a) G. Christou, S. P. Perlepes, E. Libby, K. Folting, J. C. Huffman, R. J. Webb and D. N. Hendrickson, *Inorg. Chem.* 1990, 29, 3657; (b) S. P. Perlepes, J. C. Huffman and G. Christou, *Polyhedron* 1991, 10, 2301; (c) S. P. Perlepes, E. Libby, W. E. Streib, K. Folting and G. Christou, *Polyhedron* 1992, 11, 923; (d) S. P. Perlepes, J. C. Huffman and G. Christou, *Polyhedron* 1992, 11, 1471. - 8. (a) S. P. Perlepes, J. C. Huffman, J. H. Matonic, K. R. Dunbar and G. Christou, *J. Am. Chem. Soc.* 1991, 113, 2770; (b) C. A. Crawford, J. H. Matonic, W. E. Streib, J. C. Huffman, K. R. Dunbar and G. Christou, *Inorg. Chem.* 1993, 32, 3125. - J. H. Matonic, S.-J. Chen, S. P. Perlepes, K. R. Dunbar and G. Christou, J. Am. Chem. Soc. 1991, 113, 8169. - 10. S. Meena Kumari, S. K. Tiwari and A. R. Chakravarty, *Inorg. Chem.* 1994, 33, 2085. - S. Meena Kumari and A. R. Chakravarty, J. Chem. Soc., Dalton Trans. 1992, 2749. - S. Meena Kumari and A. R. Chakravarty, Polyhedron 1993, 12, 347. - 13. S. P. Perlepes, J. C. Huffman, D. N. Hendrickson and G. Christou, to be submitted. - M. H. Chrisholm, K. Folting, J. C. Huffman and C. C. Kirkpatrick, *Inorg. Chem.* 1984, 23, 1021. - 15. K. B. Wiberg, J. Am. Chem. Soc. 1990, 112, 3379. - K. L. Taft, C. D. Delfs, G. C. Papaefthymiou, S. Foner, D. Gatteschi and S. J. Lippard, J. Am. Chem. Soc. 1994, 116, 823. - 17. A. W. Addison, T. N. Rao, J. Reedijk, J. Rijn and G. C. Verschoor, *J. Chem. Soc.*, *Dalton Trans*. 1984, 1349. - 18. M. S. Haddad, S. R. Wilson, D. J. Hodgson and D. N. Hendrickson, *J. Am. Chem. Soc.* 1981, **103**, 384 and references therein. - (a) W. M. Davis and S. J. Lippard, *Inorg. Chem.* 1985, 24, 3688; (b) M. Sakamoto, S. Itose, T. Y. Ishimori, N. Matsumoto, H. Okawa and S. Kida, *J. Chem. Soc.*, *Dalton Trans.* 1989, 2083. - (a) R. J. Doedens, *Prog. Inorg. Chem.* 1976, 21, 209; (b) M. Kato and Y. Muto, *Coord. Chem. Rev.* 1988, 92, 45. - (a) K. Bertoncello, G. D. Fallon, J. H. Hodgkin and K. S. Murray, *Inorg. Chem.* 1988, 27, 4750; (b) Y. Nishida, T. Tokii and Y. Mori, *J. Chem. Soc.*, *Chem. Commun.* 1988, 675. - (a) L. P. Battaglia, A. Bonomartini-Corradi, L. Menabue, M. Saladini and M. Sola, J. Chem. Soc., Dalton Trans. 1987, 1333; (b) K. D. Karlin, J. C. Hayes, Y. Gultneh, R. W. Cruse, J. W. McKown, J. P. Hutchinson and J. Zubieta, J. Am. Chem. Soc. 1984, 106, 2121; (c) K. D. Karlin, A. Farooq, J. C. Hayes, B. I. Cohen, T. M. Rowe, E. Sinn and J. Zubieta, Inorg. Chem. 1987, 26, 1271. - (a) A. B. P. Lever, *Inorganic Electronic Spectroscopy*, 2nd Edn, pp. 356, 553–572. Elsevier, Amsterdam (1984); (b) S. Tyagi and B. J. Hathaway, *J. Chem. Soc.*, *Dalton Trans*. 1983, 199. - (a) K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th Edn, pp. 147–150, 251. Wiley, New York (1986); (b) G. B. Deacon and R. J. Phillips, Coord. Chem. Rev. 1980, 33, 227; (c) L. A. P. M. Hall, Polyhedron 1990, 9, 2575.